Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Qi-Liang Deng, Ming Yu, Xin Chen, Chun-Hua Diao, Zuo-Liang Jing and Zhi Fan*

College of Sciences, Tianjin University of Science and Technology, Tianjin 300222, People's Republic of China

Correspondence e-mail: zhifan@public.tpt.tj.cn

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.002 Å R factor = 0.040 wR factor = 0.111 Data-to-parameter ratio = 16.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $C_{13}H_{11}N_3O_2$, was prepared by the reaction of pyridine-4-carboxylic acid hydrazide and *p*-hydroxybenzaldehyde in ethanol. In the crystal structure, all non-H atoms are coplanar, with an r.m.s. deviation of 0.096 Å. N-H···N, O-H···N and O-H···O intermolecular hydrogen bonds stabilize the structure.

N'-(4-Hydroxybenzylidene)isonicotinohydrazide

Received 27 June 2005 Accepted 11 July 2005 Online 16 July 2005

Comment

The synthesis and structure of Schiff bases have attracted much attention because of their pharmacological activity (Parashar *et al.*, 1988) and photochromic properties (Hadjoudis *et al.*, 1987). We report here the synthesis and crystal structure of the title compound, (I).

The C7–C8, C7=N3 and N2–N3 bond lengths are 1.452 (2), 1.273 (2) and 1.382 (2) Å, respectively; these values are in good agreement with those in a similar system (Jing *et al.*, 2005). All the non-H atoms are coplanar, with an r.m.s. deviation of 0.096 Å.

Intermolecular $N-H\cdots N$, $O-H\cdots N$ and $O-H\cdots O$ hydrogen bonds are found in the crystal structure (Table 1 and Fig. 2). These stabilize the structure, forming a supramolecular network pattern.

Experimental

An anhydrous ethanol solution (50 ml) of pyridine-4-carboxylic acid hydrazide (1.37 g, 10 mmol) was added to an anhydrous ethanol solution (50 ml) of *p*-hydroxybenzaldehyde (1.22 g, 10 mmol), and the mixture was stirred at 343 K for 5 h under nitrogen, producing a yellow precipitate. The product was isolated, recrystallized from ethanol, and then dried *in vacuo* to give the pure compound in 82% yield. Bright-yellow single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Crystal data	
$C_{13}H_{11}N_3O_2$	$D_x = 1.404 \text{ Mg m}^{-3}$
$M_r = 241.25$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 1357
a = 8.4553 (14) Å	reflections
b = 10.1812 (16) Å	$\theta = 2.4-24.5^{\circ}$
c = 13.408 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 98.646 \ (2)^{\circ}$	T = 294 (2) K
V = 1141.1 (3) Å ³	Plate, yellow
Z = 4	$0.32 \times 0.26 \times 0.10 \text{ mm}$

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

Data collection

Bruker SMART 1000 CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 1999) $T_{min} = 0.950, T_{max} = 0.990$ 7461 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.111$ S = 1.082731 reflections 171 parameters H atoms treated by a mixture of independent and constrained 2731 independent reflections 1779 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 28.0^{\circ}$ $h = -7 \rightarrow 11$ $k = -13 \rightarrow 13$ $l = -17 \rightarrow 17$

$$\begin{split} w &= 1/[\sigma^2(F_{\rm o}^2) + (0.0515P)^2 \\ &+ 0.0289P] \\ \text{where } P &= (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.14 \text{ e } \text{ Å}^{-3} \\ \Delta\rho_{\rm min} &= -0.18 \text{ e } \text{ Å}^{-3} \end{split}$$

independent and constrained refinement

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} N2 - H2B \cdots N1^{i} \\ O2 - H2 \cdots N3^{ii} \\ O2 - H2 \cdots O1^{ii} \end{array}$	0.87 (2) 0.90 (2) 0.90 (2)	2.40 (2) 2.46 (2) 2.00 (2)	3.2350 (17) 3.1177 (15) 2.8340 (14)	160 (2) 130 (2) 155 (2)

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$.

C-bound H atoms were positioned geometrically and refined using the riding-model approximation, with C-H = 0.93 Å and $U_{\rm iso}({\rm H})$ = $1.2U_{\rm eq}$ (carrier atom). H atoms attached to N and O atoms were located in a difference Fourier map and refined freely.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

References

Bruker (1999). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). *Tetrahedron*, **43**, 1345–1360.

Figure 1

A view of the title compound, shown with 30% probability displacement ellipsoids.

Jing, Z.-L., Yu, M., Chen, X., Diao, C.-H., Deng, Q.-L. & Fan, Z. (2005). Acta Cryst. E61, 0145–0146.

- Parashar, R. K., Sharma, R. C., Kumar, A. & Mohan, G. (1988). Inorg. Chim. Acta, 151, 201–208.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.